Borer, et al, 2009. Some Simple Guidelines for Effective Data Management. https://doi.org/10.1890/0012-9623-90.2.205
Fegraus, et al, 2005. Maximizing the Value of Ecological Data with Structured Metadata: An Introduction to Ecological Metadata Language (EML) and Principles for Metadata Creation. https://doi.org/10.1890/0012-9623(2005)86[158:MTVOED]2.0.CO;2
Hampton, et al, 2015. The Tao of open science for ecology. Ecosphere 6, art120. https://doi.org/10.1890/ES14-00402.1
Heidorn, P.B., 2008. Shedding Light on the Dark Data in the Long Tail of Science. Library Trends 57, 280–299. https://doi.org/10.1353/lib.0.0036
Michener, W.K., 2015. Ten Simple Rules for Creating a Good Data Management Plan. PLOS Computational Biology 11, e1004525. https://doi.org/10.1371/journal.pcbi.1004525
Recknagel, F., Michener, W.K., 2018. Ecological Informatics: An Introduction, in: Recknagel, F., Michener, W.K. (Eds.), Ecological Informatics: Data Management and Knowledge Discovery. Springer International Publishing, Cham, pp. 3–10. https://doi.org/10.1007/978-3-319-59928-1_1
Michener, W.K., 2018. Ecological Informatics: Data Discovery, in: Recknagel, F., Michener, W.K. (Eds.), Ecological Informatics: Data Management and Knowledge Discovery. Springer International Publishing, Cham, pp. 3–10. https://doi.org/10.1007/978-3-319-59928-1_1
Schildhauer M.S., 2018. Ecological Informatics: Data Integration, in: Recknagel, F., Michener, W.K. (Eds.), Ecological Informatics: Data Management and Knowledge Discovery. Springer International Publishing, Cham, pp. 3–10. https://doi.org/10.1007/978-3-319-59928-1_1
Wilkinson, et al, 2016. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3, 160018. https://doi.org/10.1038/sdata.2016.18
library(tidyverse)
library(DT)
# Set the random seed to make this reproducible
set.seed(12)
# Read the roster
students <- read.csv("data/eds213_roster.csv")
# Randomly create the groups
groups <- students %>%
slice(sample(1:n())) %>% # randomly arrange the data frame
group_by((row_number()-1) %/% (n()/9)) %>% # create 9 Groups
nest %>% pull() %>% bind_rows(.id = "Group") %>% # group number as column
datatable(options = list(pageLength = 25)) # Display
groups
Wed 09/29/2021
See here for more background information about the group project
Wed 10/06/2021 at 12PM (Noon)